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Requirements

« HPC Cluster Account available to Tufts affiliates

VPN if working off campus

e Basic knowledge:
* Intro to Linux
 HPC Quick Start guide or Intro to HPC
* Introductionto R

We’ll test out access together during this session.
Depending on the number/type of questions, we may choose to follow up after the session.


https://access.tufts.edu/research-cluster-account
https://access.tufts.edu/vpn
https://tufts.box.com/s/x9aflewr2qw59pcbgcghbo9muykbi4ju
https://tufts.app.box.com/s/wflnqfkymf77an6wsvg82ite65arhqg1
https://tufts.app.box.com/s/x9aflewr2qw59pcbgcghbo9muykbi4ju
https://tufts.app.box.com/v/IntroR

DNA and RNA in a cell

https://i0.wp.com/science-explained.com/wp-content/uploads/2013/08/Cell.jpg



Two common analysis goals

DNA Sequencing

RNA Sequencing
* Fixed copy number of a gene per
cell

* Copy of a gene (MRNA transcript)
per cell depends on gene
expression

* Analysis goal:
Variant calling and interpretation

e Analysis goal: Differential
expression and interpretation

https://i0.wp.com/science-explained.com/wp-content/uploads/2013/08/Cell.jpg



This workshop will cover RNA seqguencing

RNA Sequencing
* Fixedc ne per cell
 Anal
Varj ' rpretation e Copy of a gene per cell depends

on gene expression

* Analysis goal: Differential

expression and interpretation
Not today! P P

Check out our “Intro to NGS” workshop:
https://rbatorsky.github.io/intro-to-ngs-bioinformatics/

https://i0.wp.com/science-explained.com/wp-content/uploads/2013/08/Cell.jpg


https://rbatorsky.github.io/intro-to-ngs-bioinformatics/

Why is differential expression useful?

We’re looking for an explanation of observed phenotypes:

Replicates

Yeast Wild Type . ‘ .
Yeast Mutant - - -

What causes difference in phenotype? Difference in protein activity!



MRNA is easier to measure than protein, so we use it as a proxy

Gene A GeneB GeneC

Read Counts

}

Number of mRNA copies

Concentration of proteins

!

Difference in protein activity

.

Phenotype

> Q

https://www.slideshare.net/jakonix/part-1-of-rnaseq-for-de-defining-the-goal



Though our assumptions about correlation are often violated

Gene A GeneB GeneC

Read Counts Failure to map to proper location,
1 biases in library prep

Number of mRNA copies

l mRNA templates have different speeds of
protein production, alternative splicing
Concentration of proteins

l Protein activity is independently regulated
(phosphorylation, ubiquitination)

Difference in protein activity

.

Phenotype

?
- : ‘ https://www.slideshare.net/jakonix/part-1-of-rnaseq-for-de-defining-the-goal



As a consequence, we look at comparisons

Wild Type
‘ Gene A GeneB GeneC

Mutant <> —

Gene A GeneB GeneC

The final test will look at ratios: 6/8 3/2 2/0



Due to random variation in read counts, we need replicates

Replicates

Gene A GeneB GeneC

Gene A GeneB GeneC

Gene A GeneB GeneC

Gene A GeneB GeneC

Gene A GeneB GeneC

“How can we detect genes for which the counts of reads change between conditions more
systematically than as expected by chance” We must design an experiment where this hypothesis

can be tested.

Oshlack et al. 2010. From RNA-seq reads to differential expression results. Genome Biology 2010, 11:220

http://genomebiology.com/2010/11/12/220



Experiment design

How deep to sequence? How many biological replicates to choose?

 Difficult to answer in general but certainly >=3 replicates and ~20 M reads/replicate
for strongly expressed genes

* Pilot studies are recommended to determine the number of replicates needed to
capture the variability (e.g. 2 bio replicates, 10-20 M reads)

* Talk to the sequencing core!



Lessons from the mouse ENCODE study (2014)

This study was designed to test “the common notion that major developmental pathways are highly
conserved across a wide range of species, in particular across mammals.”

How close are mouse and human in terms of gene expression across multiple tissues?

https://f1000research.com/articles/4-121



https://f1000research.com/articles/4-121

Initial publication showed mouse and human cluster separately
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Once batch effects were accounted for: clustering by tissue
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ENCODE* study design was not optimal

Many tissues were not
sex-matched

Most human samples were sequenced separately from the mouse

samples:
— Tissue Human Mouse
D87PMIN1 D87PMIN1 D4LHBFN1 MONK HWI-ST373 adipose —MALE
(run 253, (run 253, (run 276, (run 312, (run 375, adrenal MALE
flow cell flow cell flow cell flow cell flow cell brain
D2GUAACXX, D2GUAACXX , C2HKJACXX , C2GR3ACXX, C3172ACXX, h
lane 7) lane 8) lane 4) lane 6) lane 7) eart  FEMALE  FEMALE
. . : kidney MALE
heart adipose adipose heart brain liver MALE
kidney adrenal adrenal kidney pancreas lung  FEMALE  FEMALE
liver sigmoid colon sigmoid colon liver brain ovary
pancreas | R
small bowel lung lung small bowel spleen sigmoid colo MALE
spleen ovary ovary testis ® Human small bowel """
testis pancreas ® Mouse spleen
testis MALE MALE

* Avoid batch effects when possible!
* Account for unavoidable batch effects in your differential expression analysis.

* Not just ENCODE! Good review! https://f1000research.com/articles/4-121
Credit: http://chagall.med.cornell.edu/RNASEQcourse/



https://f1000research.com/articles/4-12

RNAseq Library Preparation and Sequencing (Classic lllumina)
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RNAseq Library Preparation and Sequencing (Classic lllumina)
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Next Generation Sequencing (NGS

1. PREPARE GENOMIC DNA SAMPLE

2. ATTACH DNA TO SURFACE

AN
N,
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Adapters
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3. BRIDGE AMPLIFICATION

ﬁ.\domh/ fragment genomic DNA
and Egate adapters to both ends of the
fragments.

4. FRAGMENTS BECOME DOUBLE
STRANDED

to Add unisbeled nudeotides and enzyme to

Bind single-stranded frag: randomly
the inside surface of the flow cell channels.

5. DENATURE THE DOUBLE-STRANDED
MOLECULES

initiate solid-phase bridge amplification.

6. COMPLETE AMPLIFICATION

incorporates nudeotides to
build double-stranded bridges on the solid-
phase substrate.

The enzy

Several million dense dusters of double-
stranded DNA are generated in each channel
of the flow cell.

7. DETERMINE FIRST BASE 8. IMAGE FIRST BASE

9. DETERMINE SECOND BASE

After laser excitation, capture the image of
emitted fluorescence from each duster on the
flow cell. Record the identity of the first base
for each duster.

First chemistry cydle: toinitiate the first
sequending cyde, add all four label ed reversible
terminators, primers and DNA polymerase
enzyme to the flow cell.

10. IMAGE SECOND CHEMISTRY CYCLE 11. SEQUENCE READS OVER MULTIPLE

CHEMISTRY CYCLES
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Repest cycles of sequendng to determine

the sequence of bases in a given fragment
a single base at time.

After laser excitation, collect the image data
#s before. Record the identity of the second
base for each duster.

Second chemistry cyde: to initiste the
next sequending cyde, add all four labeled
reversible terminators and enzyme to the
flow cell.

12. ALIGN DATA

T
.GCIGATGTGCCGCCTCACTCCGGTGE

CACICCIGIGG
CTCACTCCIGTGG
—>GCIGATGTGCCACCTCA
GATGTGCCACCTCACTC
GIGCCOCCICACICAIG
CTCCIGTGG

Align data, compare to a reference, and
identify sequence differences.

This lllumina Video is
helpful for visualization!



https://www.illumina.com/company/video-hub/fCd6B5HRaZ8.html

Dataset for this course

“Statistical models for RNA-seq data derived from a two-condition 48-replicate experiment”

Gierlinski et al Bioinformatics 2015

* mRNA data from 48 biological replicates of
two Saccromyces cerevisiae populations

* Wildtype (WT) and SNF2 knock-out (Asnf2 )

* Unusually comprehensive analysis of
variability in sequencing replicates

Replicate
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4754627

Dataset for this course

“Statistical models for RNA-seq data derived from a two-condition 48-replicate experiment”
Gierlinski et al Bioinformatics 2015

* mRNA data from 48 biological replicates of

two Saccromyces cerevisiae populations

30 40

* Wildtype (WT) and SNF2 knock-out (Asnf2 )

Replicate

20

* Unusually comprehensive analysis of
variability in sequencing replicates

10

090 095

10 20 30 40 10 20 30 40
Replicate Replicate

**Course dataset will consider 7 subsamples of one WT replicate
and one SNF2 mutant, to demonstrate differences between
populations and details of processing batches from different
conditions

11,00

080 085

Correlation


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4754627

Invest in replicates!

* The most effective way to improve detection of differential expression in low expression genes is to add
more replicates, rather than adding more reads

* The following figure from Gierlinski et al shows coverage variation among replicates of a relatively
simple yeast transcriptome (black is average of good replicates, grey is standard deviation)

* The paper concludes that we should invest in 6 biological replicates per condition
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Gierlinski et al Bioinformatics 2015
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4754627



Next Generation Sequencing (NGS)

1. PREPARE GENOMIC DNA SAMPLE 2. ATTACH DNA TO SURFACE 3. BRIDGE AMPLIFICATION

Randomly fragment genomic DNA Bind single-stranded fragments randomly to Add unlabeled nudeotides and enzyme to

and lgate adapters to both ends of the the inside surface of the flow cell channels. initiate solid-phase bridge amplification.
fragments.

https://sites.google.com/site/himbcorelab/illumina sequencing



https://sites.google.com/site/himbcorelab/illumina_sequencing

Next Generation Sequencing (NGS)

4. FRAGMENTS BECOME DOUBLE 5. DENATURE THE DOUBLE-STRANDED 6. COMPLETE AMPLIFICATION
STRANDED MOLECULES

The enzyme incorporates nudeotides to Denaturation leaves single-stranded Several milion dense dusters of double-

build double-stranded bridges on the solid- templates anchored to the substrate. stranded DNA are generated in each channel
phase substrate. of the flow cell.

https://sites.google.com/site/himbcorelab/illumina sequencing



https://sites.google.com/site/himbcorelab/illumina_sequencing

Next Generation Sequencing (NGS)

7. DETERMINE FIRST BASE 8. IMAGE FIRST BASE 9. DETERMINE SECOND BASE

Laser
First chemistry cyde: toinitiate the first After laser exditation, capture the image of Second chemistry cyde: to initiate the
sequend ng cyde, add all four label ed reversible emitted fluorescence from each duster on the next sequending cyde, add all four labeled
terminators, primers and DNA polymerase flow cell. Record the identity of the first base reversible terminators and enzyme to the

enzyme to the flow cell. for each duster. flow cell

https://sites.google.com/site/himbcorelab/illumina sequencing



https://sites.google.com/site/himbcorelab/illumina_sequencing

Next Generation Sequencing (NGS)

10. IMAGE SECOND CHEMISTRY CYCLE 11. SEQUENCE READS OVER MULTIPLE 12. ALIGN DATA
CHEMISTRY CYCLES
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After laser excitation, collect the image data Repeat cycles of sequendng to determine Align data, compare to a reference, and
#s before. Record the identity of the second the sequence of bases in a given fragment identify sequence differences.
base for each duster. a single base at time.

https://sites.google.com/site/himbcorelab/illumina sequencing



https://sites.google.com/site/himbcorelab/illumina_sequencing

RNAseq workflow

DNA gene in genome I
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https://en.wikipedia.org/wiki/RNA-Seq



https://en.wikipedia.org/wiki/RNA-Seq

